\(\int \frac {1}{x^2 (a+b \log (c x^n))^3} \, dx\) [86]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 102 \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^3} \, dx=\frac {e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \operatorname {ExpIntegralEi}\left (-\frac {a+b \log \left (c x^n\right )}{b n}\right )}{2 b^3 n^3 x}-\frac {1}{2 b n x \left (a+b \log \left (c x^n\right )\right )^2}+\frac {1}{2 b^2 n^2 x \left (a+b \log \left (c x^n\right )\right )} \]

[Out]

1/2*exp(a/b/n)*(c*x^n)^(1/n)*Ei((-a-b*ln(c*x^n))/b/n)/b^3/n^3/x-1/2/b/n/x/(a+b*ln(c*x^n))^2+1/2/b^2/n^2/x/(a+b
*ln(c*x^n))

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {2343, 2347, 2209} \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^3} \, dx=\frac {e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \operatorname {ExpIntegralEi}\left (-\frac {a+b \log \left (c x^n\right )}{b n}\right )}{2 b^3 n^3 x}+\frac {1}{2 b^2 n^2 x \left (a+b \log \left (c x^n\right )\right )}-\frac {1}{2 b n x \left (a+b \log \left (c x^n\right )\right )^2} \]

[In]

Int[1/(x^2*(a + b*Log[c*x^n])^3),x]

[Out]

(E^(a/(b*n))*(c*x^n)^n^(-1)*ExpIntegralEi[-((a + b*Log[c*x^n])/(b*n))])/(2*b^3*n^3*x) - 1/(2*b*n*x*(a + b*Log[
c*x^n])^2) + 1/(2*b^2*n^2*x*(a + b*Log[c*x^n]))

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2343

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log
[c*x^n])^(p + 1)/(b*d*n*(p + 1))), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2347

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*n*(c*x^n
)^((m + 1)/n)), Subst[Int[E^(((m + 1)/n)*x)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}
, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{2 b n x \left (a+b \log \left (c x^n\right )\right )^2}-\frac {\int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^2} \, dx}{2 b n} \\ & = -\frac {1}{2 b n x \left (a+b \log \left (c x^n\right )\right )^2}+\frac {1}{2 b^2 n^2 x \left (a+b \log \left (c x^n\right )\right )}+\frac {\int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )} \, dx}{2 b^2 n^2} \\ & = -\frac {1}{2 b n x \left (a+b \log \left (c x^n\right )\right )^2}+\frac {1}{2 b^2 n^2 x \left (a+b \log \left (c x^n\right )\right )}+\frac {\left (c x^n\right )^{\frac {1}{n}} \text {Subst}\left (\int \frac {e^{-\frac {x}{n}}}{a+b x} \, dx,x,\log \left (c x^n\right )\right )}{2 b^2 n^3 x} \\ & = \frac {e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \text {Ei}\left (-\frac {a+b \log \left (c x^n\right )}{b n}\right )}{2 b^3 n^3 x}-\frac {1}{2 b n x \left (a+b \log \left (c x^n\right )\right )^2}+\frac {1}{2 b^2 n^2 x \left (a+b \log \left (c x^n\right )\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.92 \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^3} \, dx=\frac {e^{\frac {a}{b n}} \left (c x^n\right )^{\frac {1}{n}} \operatorname {ExpIntegralEi}\left (-\frac {a+b \log \left (c x^n\right )}{b n}\right ) \left (a+b \log \left (c x^n\right )\right )^2+b n \left (a-b n+b \log \left (c x^n\right )\right )}{2 b^3 n^3 x \left (a+b \log \left (c x^n\right )\right )^2} \]

[In]

Integrate[1/(x^2*(a + b*Log[c*x^n])^3),x]

[Out]

(E^(a/(b*n))*(c*x^n)^n^(-1)*ExpIntegralEi[-((a + b*Log[c*x^n])/(b*n))]*(a + b*Log[c*x^n])^2 + b*n*(a - b*n + b
*Log[c*x^n]))/(2*b^3*n^3*x*(a + b*Log[c*x^n])^2)

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.68 (sec) , antiderivative size = 449, normalized size of antiderivative = 4.40

method result size
risch \(\frac {-2 b n +2 a +2 b \ln \left (c \right )+2 \ln \left (x^{n}\right ) b -i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{{\left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 \ln \left (x^{n}\right ) b +2 a \right )}^{2} b^{2} n^{2} x}-\frac {c^{\frac {1}{n}} \left (x^{n}\right )^{\frac {1}{n}} {\mathrm e}^{\frac {-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 a}{2 b n}} \operatorname {Ei}_{1}\left (\ln \left (x \right )+\frac {-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 b \left (\ln \left (x^{n}\right )-n \ln \left (x \right )\right )+2 a}{2 b n}\right )}{2 b^{3} n^{3} x}\) \(449\)

[In]

int(1/x^2/(a+b*ln(c*x^n))^3,x,method=_RETURNVERBOSE)

[Out]

(-2*b*n+2*a+2*b*ln(c)+2*ln(x^n)*b-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+
I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3)/(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi
*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*ln(x^n)*b+2*a
)^2/b^2/n^2/x-1/2/b^3/n^3/x*c^(1/n)*(x^n)^(1/n)*exp(1/2*(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*cs
gn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*a)/b/n)*Ei(1,ln(x)+1/2*(-I
*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-
I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*b*(ln(x^n)-n*ln(x))+2*a)/b/n)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 192 vs. \(2 (95) = 190\).

Time = 0.31 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.88 \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^3} \, dx=\frac {b^{2} n^{2} \log \left (x\right ) - b^{2} n^{2} + b^{2} n \log \left (c\right ) + a b n + {\left (b^{2} n^{2} x \log \left (x\right )^{2} + b^{2} x \log \left (c\right )^{2} + 2 \, a b x \log \left (c\right ) + a^{2} x + 2 \, {\left (b^{2} n x \log \left (c\right ) + a b n x\right )} \log \left (x\right )\right )} e^{\left (\frac {b \log \left (c\right ) + a}{b n}\right )} \operatorname {log\_integral}\left (\frac {e^{\left (-\frac {b \log \left (c\right ) + a}{b n}\right )}}{x}\right )}{2 \, {\left (b^{5} n^{5} x \log \left (x\right )^{2} + b^{5} n^{3} x \log \left (c\right )^{2} + 2 \, a b^{4} n^{3} x \log \left (c\right ) + a^{2} b^{3} n^{3} x + 2 \, {\left (b^{5} n^{4} x \log \left (c\right ) + a b^{4} n^{4} x\right )} \log \left (x\right )\right )}} \]

[In]

integrate(1/x^2/(a+b*log(c*x^n))^3,x, algorithm="fricas")

[Out]

1/2*(b^2*n^2*log(x) - b^2*n^2 + b^2*n*log(c) + a*b*n + (b^2*n^2*x*log(x)^2 + b^2*x*log(c)^2 + 2*a*b*x*log(c) +
 a^2*x + 2*(b^2*n*x*log(c) + a*b*n*x)*log(x))*e^((b*log(c) + a)/(b*n))*log_integral(e^(-(b*log(c) + a)/(b*n))/
x))/(b^5*n^5*x*log(x)^2 + b^5*n^3*x*log(c)^2 + 2*a*b^4*n^3*x*log(c) + a^2*b^3*n^3*x + 2*(b^5*n^4*x*log(c) + a*
b^4*n^4*x)*log(x))

Sympy [F]

\[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int \frac {1}{x^{2} \left (a + b \log {\left (c x^{n} \right )}\right )^{3}}\, dx \]

[In]

integrate(1/x**2/(a+b*ln(c*x**n))**3,x)

[Out]

Integral(1/(x**2*(a + b*log(c*x**n))**3), x)

Maxima [F]

\[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int { \frac {1}{{\left (b \log \left (c x^{n}\right ) + a\right )}^{3} x^{2}} \,d x } \]

[In]

integrate(1/x^2/(a+b*log(c*x^n))^3,x, algorithm="maxima")

[Out]

-1/2*(b*(n - log(c)) - b*log(x^n) - a)/(b^4*n^2*x*log(x^n)^2 + 2*(b^4*n^2*log(c) + a*b^3*n^2)*x*log(x^n) + (b^
4*n^2*log(c)^2 + 2*a*b^3*n^2*log(c) + a^2*b^2*n^2)*x) + integrate(1/2/(b^3*n^2*x^2*log(x^n) + (b^3*n^2*log(c)
+ a*b^2*n^2)*x^2), x)

Giac [F]

\[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int { \frac {1}{{\left (b \log \left (c x^{n}\right ) + a\right )}^{3} x^{2}} \,d x } \]

[In]

integrate(1/x^2/(a+b*log(c*x^n))^3,x, algorithm="giac")

[Out]

integrate(1/((b*log(c*x^n) + a)^3*x^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (a+b \log \left (c x^n\right )\right )^3} \, dx=\int \frac {1}{x^2\,{\left (a+b\,\ln \left (c\,x^n\right )\right )}^3} \,d x \]

[In]

int(1/(x^2*(a + b*log(c*x^n))^3),x)

[Out]

int(1/(x^2*(a + b*log(c*x^n))^3), x)